Замена переменных в двойном интеграле.
Расмотрим двойной интеграл вида , где переменная х изменяется в пределах от a до b, а переменная у – от j1(x) до j2(х).
Положим х = f(u, v); y = j(u, v)
Тогда dx = ; dy =
;
т.к. при первом интегрировании переменная х принимается за постоянную, то dx = 0.
, т.е.
пожставляя это выражение в записанное выше соотношение для dy, получаем:
Выражение называется определителем Якоби или Якобианом функций f(u, v) и j(u, v).
(Якоби Карл Густав Якоб – (1804–1851) – немецкий математик)
Тогда
Т.к. при первом интегрировании приведенное выше выражение для dx принимает вид ( при первом интегрировании полагаем v = const, dv = 0), то при изменении порядка интегрирования, получаем соотношение:
Еще по теме Замена переменных в двойном интеграле.:
-
Аналитическая геометрия -
Вариационное исчисление -
Векторный и тензорный анализ -
Высшая геометрия -
Высшая математика -
Вычислительная математика -
Дискретная математика -
Дифференциальное и интегральное исчисление -
Дифференциальные уравнения -
Исследование операций -
История математики -
Комплексное исчисление -
Линейная алгебра -
Линейное программирование -
Математика для экономистов -
Математическая логика -
Математическая физика -
Математический анализ -
Пределы -
Ряды -
Статистика -
Теория вероятностей -
Теория графов -
Теория игр -
Теория принятия решений -
Теория случайных процессов -
Теория чисел -
Функциональный анализ -
-
Архитектура и строительство -
Безопасность жизнедеятельности -
Библиотечное дело -
Бизнес -
Биология -
Военные дисциплины -
География -
Геология -
Демография -
Диссертации России -
Естествознание -
Журналистика и СМИ -
Информатика, вычислительная техника и управление -
Искусствоведение -
История -
Культурология -
Литература -
Маркетинг -
Математика -
Медицина -
Менеджмент -
Педагогика -
Политология -
Право России -
Право України -
Промышленность -
Психология -
Реклама -
Религиоведение -
Социология -
Страхование -
Технические науки -
Учебный процесс -
Физика -
Философия -
Финансы -
Химия -
Художественные науки -
Экология -
Экономика -
Энергетика -
Юриспруденция -
Языкознание -