<<
>>

Уравнение Лапласа.

Определение. Функция называется гармонической на области s, если она имеет непрерывные частные производные второго порядка на области s и удовлетворяет условию

,

где D – оператор Лапласа.

Уравнение называется уравнением Лапласа.

Если на некоторой границе Г тела поддерживать постоянную температуру , где f – заданная функция, то внутри тела установится единственная постоянная температура. С физической точки зрения это утверждение очевидно, однако, данный факт может быть доказан математически.

Математическое доказательство этого факта называется задачей Дирихле.

(Петер Густав Дирихле (1805 – 1859) – немецкий математик)

<< | >>
Источник: Архаров Евгений Валерьевич. Учебно–методический комплекс по дисциплине Математика Нижний Новгород, 2011. 2011

Еще по теме Уравнение Лапласа.: