<<
>>

Транспортная параметрическая задача

Задача формулируется следующим образом: для всех значений параметра δ ≤ λ ≤ φ, где δ, φ — произвольные действительные числа, найти такие значения xij (i = ; j =), которые обращают в минимум функцию

при ограничениях:

Пользуясь методом потенциалов, решаем задачу при λ = δ до получения оптимального решения.

Признаком оптимальности является условие:

ui + vj — [c'ij + λс"ij) ≤ 0 для незанятых клеток

и ui + vj = с' ij + λс''ij для занятых клеток,

где ui, vj — потенциалы строк, столбцов распределительной таблицы.

Условие совместимости транспортной задачи запишется в виде

Значения αij и βij определяются из условия

где u'i, v'i, u"j, v"j определяются из систем уравнений

Значения λ находятся в пределах λ1 ≤ λ ≤ λ2:

Алгоритм решения.

1) Задачу решаем при конкретном значении параметра λ = δ до получения оптимального решения.

2) Определяем αij и βij.

3) Вычисляем значения параметра λ.

4) Если λ < φ, производим перераспределение поставок и получаем новое оптимальное решение. Если λ = φ, то процесс решения окончен.

<< | >>
Источник: Архаров Евгений Валерьевич. Учебно–методический комплекс по дисциплине Математика Нижний Новгород, 2011. 2011

Еще по теме Транспортная параметрическая задача: