Свойства производной векторной функции скалярного аргумента.
1)
2) , где l = l(t) – скалярная функция
3)
4)
Уравнение нормальной плоскости к кривой будет иметь вид:
Пример.
Составить уравнения касательной и нормальной плоскости к линии, заданной уравнением
Уравнения, описывающие кривую, по осям координат имеют вид:
x(t) = cost; y(t) = sint; z(t) = ;
Находим значения функций и их производных в заданной точке:
x¢(t) = –sint; y¢(t) = cost;
x¢(p/2) = –1; y¢(p/2) = 0; z¢(p/2)=
x(p/2) = 0; y(p/2) = 1; z(p/2)= p/2
- это уравнение касательной.
Нормальная плоскость имеет уравнение:
Еще по теме Свойства производной векторной функции скалярного аргумента.:
-
Аналитическая геометрия -
Вариационное исчисление -
Векторный и тензорный анализ -
Высшая геометрия -
Высшая математика -
Вычислительная математика -
Дискретная математика -
Дифференциальное и интегральное исчисление -
Дифференциальные уравнения -
Исследование операций -
История математики -
Комплексное исчисление -
Линейная алгебра -
Линейное программирование -
Математика для экономистов -
Математическая логика -
Математическая физика -
Математический анализ -
Пределы -
Ряды -
Статистика -
Теория вероятностей -
Теория графов -
Теория игр -
Теория принятия решений -
Теория случайных процессов -
Теория чисел -
Функциональный анализ -
-
Архитектура и строительство -
Безопасность жизнедеятельности -
Библиотечное дело -
Бизнес -
Биология -
Военные дисциплины -
География -
Геология -
Демография -
Диссертации России -
Естествознание -
Журналистика и СМИ -
Информатика, вычислительная техника и управление -
Искусствоведение -
История -
Культурология -
Литература -
Маркетинг -
Математика -
Медицина -
Менеджмент -
Педагогика -
Политология -
Право России -
Право України -
Промышленность -
Психология -
Реклама -
Религиоведение -
Социология -
Страхование -
Технические науки -
Учебный процесс -
Физика -
Философия -
Финансы -
Химия -
Художественные науки -
Экология -
Экономика -
Энергетика -
Юриспруденция -
Языкознание -