Ряд Фурье по ортогональной системе функций.
Определение. Функции j(х) и y(х), определенные на отрезке [a, b], называются ортогональными на этом отрезке, если
Определение.
Последовательность функций j1(x), j2(x), …, jn(x), непрерывных на отрезке [a, b], называется ортогональной системой функций на этом отрезке, если все функции попарно ортогональны.
Отметим, что ортогональность функций не подразумевает перпендикулярности графиков этих функций.
Определение. Система функций называется ортогональной и нормированной (ортонормированной), если
Определение. Рядом Фурье по ортогональной системе функций j1(x), j2(x), …,jn(x) называется ряд вида:
коэффициенты которого определяются по формуле:
,
где f(x) = – сумма равномерно сходящегося на отрезке [a, b] ряда по ортогональной системе функций. f(x) – любая функция, непрерывная или имеющая конечное число точек разрыва первого рода на отрезке [a, b].
В случае ортонормированной системы функций коэффициенты определяются:
Интеграл Фурье.
Пусть функция f(x) на каждом отрезке [–l,l], где l – любое число, кусочно – гладкая или кусочно – монотонная, кроме того, f(x) – абсолютно интегрируемая функция, т.е. сходится несобственный интеграл
Тогда функция f(x) разлагается в ряд Фурье:
Если подставить коэффициенты в формулу для f(x), получим:
Переходя к пределу при l®¥, можно доказать, что и
Обозначим
При l®¥ Dun ®0.
Можно доказать, что предел суммы, стоящий в правой части равенства равен интегралу
Тогда – двойной интеграл Фурье.
Окончательно получаем:
– представление функции f(x) интегралом Фурье.
Двойной интеграл Фурье для функции f(x) можно представить в комплексной форме: