<<
>>

Решение задачи Дирихле для круга.

Пусть в плоскости XOY имеется круг радиуса R с центром в начале координат и на его окружности задана функция f(j), где j – полярный угол.

Требуется найти функцию , которая удовлетворяет уравнению Лапласа

и при

Запишем уравнение Лапласа в полярных координатах:

Полагаем Подставляя это соотношение в уравнение Лапласа, получаем:

Таким образом, имеем два уравнения:

Общее решение первого уравнения имеет вид:

Решение второго уравнения ищем в виде: .

При подстановке получим:

Общее решение второго уравнения имеет вид: .

Подставляя полученные решения в уравнение , получим:

Эта функция будет решением уравнения Лапласа при любом k ? 0.

Если k = 0, то следовательно .

Решение должно быть периодическим, т.к. одно и то же значение будет повторяться через 2p. (Тогда рассматривается одна и та же точка круга.) Поэтому В0 = 0.

Решение должно быть конечным и непрерывным, поэтому D0 = 0.

Окончательно получаем:

При этом:

Если подставить эти коэффициенты в полученную выше формулу и произвести упрощение, получаем окончательный результат решения задачи Дирихле, который называется интегралом Пуассона.

(Симеон Дени Пуассон (1781 – 1840) – французский математик)

<< | >>
Источник: Архаров Евгений Валерьевич. Учебно–методический комплекс по дисциплине Математика Нижний Новгород, 2011. 2011

Еще по теме Решение задачи Дирихле для круга.: