<<
>>

Расстояние от точки до плоскости.

Расстояние от произвольной точки М0(х0, у0, z0) до плоскости Ах+Ву+Сz+D=0 равно:

id="Рисунок 777" class="lazyload" data-src="/files/uch_group46/uch_pgroup327/uch_uch1271/image/257.gif">

Пример.

Найти уравнение плоскости, зная, что точка Р(4; –3; 12) – основание перпендикуляра, опущенного из начала координат на эту плоскость.

Таким образом, A = 4/13; B = –3/13; C = 12/13, воспользуемся формулой:

A(x – x0) + B(y – y0) + C(z – z0) = 0.

Пример. Найти уравнение плоскости, проходящей через две точки P(2; 0; –1) и

Q(1; –1; 3) перпендикулярно плоскости 3х + 2у – z + 5 = 0.

Вектор нормали к плоскости 3х + 2у – z + 5 = 0 параллелен искомой плоскости.

Получаем:

Пример. Найти уравнение плоскости, проходящей через точки А(2, –1, 4) и

В(3, 2, –1) перпендикулярно плоскости х + у + 2z – 3 = 0.

Искомое уравнение плоскости имеет вид: Ax + By + Cz + D = 0, вектор нормали к этой плоскости (A, B, C). Вектор (1, 3, –5) принадлежит плоскости. Заданная нам плоскость, перпендикулярная искомой имеет вектор нормали (1, 1, 2). Т.к. точки А и В принадлежат обеим плоскостям, а плоскости взаимно перпендикулярны, то

Таким образом, вектор нормали (11, –7, –2).

Т.к. точка А принадлежит искомой плоскости, то ее координаты должны удовлетворять уравнению этой плоскости, т.е. 11?2 + 7?1 – 2?4 + D = 0; D = –21.

Итого, получаем уравнение плоскости: 11x – 7y – 2z – 21 = 0.

Пример. Найти уравнение плоскости, зная, что точка Р(4, –3, 12) – основание перпендикуляра, опущенного из начала координат на эту плоскость.

Находим координаты вектора нормали = (4, –3, 12). Искомое уравнение плоскости имеет вид: 4x – 3y + 12z + D = 0. Для нахождения коэффициента D подставим в уравнение координаты точки Р:

16 + 9 + 144 + D = 0

D = –169

Итого, получаем искомое уравнение: 4x – 3y + 12z – 169 = 0

Пример. Даны координаты вершин пирамиды А1(1; 0; 3), A2(2; –1; 3), A3(2; 1; 1),

A4(1; 2; 5).

1) Найти длину ребра А1А2.

2) Найти угол между ребрами А1А2 и А1А4.

3) Найти угол между ребром А1А4 и гранью А1А2А3.

Сначала найдем вектор нормали к грани А1А2А3 как векторное произведение векторов и.

= (2–1; 1–0; 1–3) = (1; 1; –2);

Найдем угол между вектором нормали и вектором .

–4 – 4 = –8.

Искомый угол g между вектором и плоскостью будет равен g = 900 – b.

4) Найти площадь грани А1А2А3.

5) Найти объем пирамиды.

(ед3).

6) Найти уравнение плоскости А1А2А3.

Воспользуемся формулой уравнения плоскости, проходящей через три точки.

2x + 2y + 2z – 8 = 0

x + y + z – 4 = 0;

<< | >>
Источник: Архаров Евгений Валерьевич. Учебно–методический комплекс по дисциплине Математика Нижний Новгород, 2011. 2011

Еще по теме Расстояние от точки до плоскости.: