Производная по направлению.
Рассмотрим функцию u(x, y, z) в точке М( x, y, z) и точке М1( x + Dx, y + Dy, z + Dz).
Проведем через точки М и М1 вектор .

Расстояние между точками М и М1 на векторе обозначим DS.
Высказанные выше предположения, проиллюстрируем на рисунке:
z
M
M1
y
x
Далее предположим, что функция u(x, y, z) непрерывна и имеет непрерывные частные производные по переменным х, у и z. Тогда правомерно записать следующее выражение:
,
где величины e1, e2, e3 – бесконечно малые при .
Из геометрических соображений очевидно:
Таким образом, приведенные выше равенства могут быть представлены следующим образом:
;
Заметим, что величина s является скалярной.
Она лишь определяет направление вектора
Из этого уравнения следует следующее определение:
Определение: Предел называется производной функции u(x, y, z) по направлению вектора
в точке с координатами ( x, y, z).
Поясним значение изложенных выше равенств на примере.
Пример. Вычислить производную функции z = x2 + y2x в точке А(1, 2) по направлению вектора . В (3, 0).
Решение. Прежде всего необходимо определить координаты вектора .
=(3–1; 0–2) = (2; –2) = 2
.
Далее определяем модуль этого вектора:
=id="Рисунок 1856" class="lazyload" data-src="/files/uch_group46/uch_pgroup327/uch_uch1271/image/1771.gif">
Находим частные производные функции z в общем виде:
Значения этих величин в точке А :
Для нахождения направляющих косинусов вектора производим следующие преобразования:
=
За величину принимается произвольный вектор, направленный вдоль заданного вектора, т.е.
Отсюда получаем значения направляющих косинусов вектора :
cosa = ; cosb = –
Окончательно получаем: – значение производной заданной функции по направлению вектора
.
Градиент.
Определение: Если в некоторой области D задана функция u = u(x, y, z) и некоторый вектор, проекции которого на координатные оси равны значениям функции u в соответствующей точке
,
то этот вектор называется градиентом функции u.
При этом говорят, что в области D задано поле градиентов.