1.1. Понятие предела функции в точке. Основные теоремы о пределах.
Пусть функция у = f(x) определена на некотором промежутке Х и пусть точка х0 є Х. Составим из множества Х последовательность точек: х1, х2,…,хn,…сходящихся к х0. Значения функции в этих точках также образуют последовательность: f(x1), f(x2),…,f(xn).
Число А называется пределом функции f () в точке
=
, если при любых значениях
, сколь угодно близких к числу
(
), значение функции f (
)
становится сколь угодно близким к числу А.
Математическое выражение предела даётся в формуле (1.)
f (
) =
f (
)
. (1)
Еще по теме 1.1. Понятие предела функции в точке. Основные теоремы о пределах.:
-
Аналитическая геометрия -
Вариационное исчисление -
Векторный и тензорный анализ -
Высшая геометрия -
Высшая математика -
Вычислительная математика -
Дискретная математика -
Дифференциальное и интегральное исчисление -
Дифференциальные уравнения -
Исследование операций -
История математики -
Комплексное исчисление -
Линейная алгебра -
Линейное программирование -
Математика для экономистов -
Математическая логика -
Математическая физика -
Математический анализ -
Пределы -
Ряды -
Статистика -
Теория вероятностей -
Теория графов -
Теория игр -
Теория принятия решений -
Теория случайных процессов -
Теория чисел -
Функциональный анализ -
-
Архитектура и строительство -
Безопасность жизнедеятельности -
Библиотечное дело -
Бизнес -
Биология -
Военные дисциплины -
География -
Геология -
Демография -
Диссертации России -
Естествознание -
Журналистика и СМИ -
Информатика, вычислительная техника и управление -
Искусствоведение -
История -
Культурология -
Литература -
Маркетинг -
Математика -
Медицина -
Менеджмент -
Педагогика -
Политология -
Право России -
Право України -
Промышленность -
Психология -
Реклама -
Религиоведение -
Социология -
Страхование -
Технические науки -
Учебный процесс -
Физика -
Философия -
Финансы -
Химия -
Художественные науки -
Экология -
Экономика -
Энергетика -
Юриспруденция -
Языкознание -