Основные понятия
Как следует из предыдущего раздела, интеграл ‑ важнейшее понятие математического анализа. Неопределенным интегралом функции (обозначается
) называется совокупность функций
, у которых производная в каждой точке равна
.


Определенным интегралом функции от
до
(обозначается
) называется разность
, где
‑ любая из первообразных. Если функция
положительная и непрерывная, то
равен площади фигуры, ограниченной кривой
, осью абсцисс и прямыми
.
Определенный интеграл (если ‑ непрерывная функция) можно представить следующим образом. Разобьем отрезок
на отрезки
,
,
,
. Взяв на каждом отрезке произвольную точку
, составим сумму:
.
Предел этой суммы при стремящемся к нулю, равен
. Понятие интеграла обобщается и на разрывные функции. 5.2