<<
>>

Окружность.

Если центр окружности находится в начале координат, то координаты любой ее

точки могут быть найдены по формулам:

0 £ t £ 3600

Если исключить параметр t, то получим каноническое уравнение окружности:

x2 + y2 = r2(cos2t + sin2t) = r2

Эллипс.

Каноническое уравнение: .

В

C M(x, y)

t

О N P

Для произвольной точки эллипса М(х, у) из геометрических соображений можно записать: из DОВР и из DOCN, где а– большая полуось эллипса, а b– меньшая полуось эллипса, х и у – координаты точки М.

Тогда получаем параметрические уравнения эллипса:

где 0 £ t £ 2p

Угол t называется эксцентрическим углом.

<< | >>
Источник: Архаров Евгений Валерьевич. Учебно–методический комплекс по дисциплине Математика Нижний Новгород, 2011. 2011

Еще по теме Окружность.: