<<
>>

Квадратичные формы.

Определение: Однородный многочлен второй степени относительно переменных х1 и х2

Ф(х1, х2) = а11 ,

не содержащий свободного члена и неизвестных в первой степени, называется квадратичной формой переменных х1 и х2.

Определение: Однородный многочлен второй степени относительно переменных х1, х2 и х3

не содержащий свободного члена и неизвестных в первой степени называется квадратичной формой переменных х1, х2 и х3.

Рассмотрим квадратичную форму двух переменных. Квадратичная форма имеет симметрическую матрицу А = . Определитель этой матрицы называется определителем квадратичной формы.

Пусть на плоскости задан ортогональный базис . Каждая точка плоскости имеет в этом базисе координаты х1, х2.

Если задана квадратичная форма Ф(х1, х2) = а11, то ее можно рассматривать как функцию от переменных х1 и х2.

<< | >>
Источник: Архаров Евгений Валерьевич. Учебно–методический комплекс по дисциплине Математика Нижний Новгород, 2011. 2011

Еще по теме Квадратичные формы.: