Алгебраические структуры.
Определение. На множестве А определена алгебраическая операция, если каждым двум элементам этого множества, взятым в определенном порядке, однозначным образом поставлен в соответствие некоторый третий элемент из этого же множества.
Примерами алгебраических операций могут служить такие операции как сложение и вычитание целых чисел, сложение и вычитание векторов, матриц, умножение квадратных матриц, векторное умножение векторов и др.
Отметим, что скалярное произведение векторов не может считаться алгебраической операцией, т.к. результатом скалярного произведения будет число, и числа не относятся к множеству векторов, к которому относятся сомножители.
Определение. Множество А с определенной на нем алгебраической операцией (например, умножением) называется группой, если выполнены следующие условия:
1) для любых трех элементов a, b, c Î A выполняется свойство ассоциативности:
2) в множестве А существует такой элемент е, что для любого элемента а из этого множества выполняется равенcтво:
3) для любого элемента а множества существует элемент а’ из этого же множества такой, что
Различные множества могут являться группой относительно какой– либо операции и не являться группой относительно другой операции.
Число элементов называется порядком группы.
Определение. Между элементами множеств M и N установлено взаимно однозначное соответствие, если каждому элементу множества М поставлен в соответствие определенный элемент множества N, причем различным элементам одного множества соответсвуют различные элементы другого множества.
Определение.
Две группы M и N называются изоморфными, если между их элементами можно установить взаимно однозначное соответсвие, при котором для любых двух элементов a, bÎ M и соответствующим им элементам a’, b’Î N элементус = ab будет соответствует элемент c’ = a’b’.
При этом отображение группы М на группу N называется гомоморфизмом.
Определение. Если операция, определенная в группе коммутативна, (т.е. для любых элементов a и b группы верно соотношение ab=ba), то такая группа называется коммутативной или абелевой группой.
Определение. Множество R с двумя определенными в нем алгебраическими операциями, сложением и умножением, называется кольцом, если относительно операции сложения оно является абелевой группой, а операция умножения дистрибутивна, т.е. для любых элементов a, b и с Î R справедливы равенства:
Если операция умножения, определенная в кольце коммутативна, то такое кольцо называется коммутативным кольцом.
Определение. Полем называется коммутативное кольцо, в котором для любого ненулевого элемента a? 0 и любого элемента b существует единственный элемент х такой, что ax = b.