Абсолютная сходимость
Рассмотрим произвольный числовой ряд
![]() | (7) |
(никаких предположений о знаках членов не делаем).
![]() | (8) |
Пример 18. Ряд не является абсолютно сходящимся (хотя и сходится см. пример 16), так как ряд
расходится.
Пример 19. Ряд сходится абсолютно, т.к. ряд
сходится.
Теорема. Если ряд сходится абсолютно, то он сходится (в обычном смысле).
Это означает, что если сходится ряд (8), то сходится и ряд (7). Поскольку ряд ‑ положительный, то для его исследования можно использовать любой признак сходимости положительных рядов. 6.5
Еще по теме Абсолютная сходимость:
-
Аналитическая геометрия -
Вариационное исчисление -
Векторный и тензорный анализ -
Высшая геометрия -
Высшая математика -
Вычислительная математика -
Дискретная математика -
Дифференциальное и интегральное исчисление -
Дифференциальные уравнения -
Исследование операций -
История математики -
Комплексное исчисление -
Линейная алгебра -
Линейное программирование -
Математика для экономистов -
Математическая логика -
Математическая физика -
Математический анализ -
Пределы -
Ряды -
Статистика -
Теория вероятностей -
Теория графов -
Теория игр -
Теория принятия решений -
Теория случайных процессов -
Теория чисел -
Функциональный анализ -
-
Архитектура и строительство -
Безопасность жизнедеятельности -
Библиотечное дело -
Бизнес -
Биология -
Военные дисциплины -
География -
Геология -
Демография -
Диссертации России -
Естествознание -
Журналистика и СМИ -
Информатика, вычислительная техника и управление -
Искусствоведение -
История -
Культурология -
Литература -
Маркетинг -
Математика -
Медицина -
Менеджмент -
Педагогика -
Политология -
Право России -
Право України -
Промышленность -
Психология -
Реклама -
Религиоведение -
Социология -
Страхование -
Технические науки -
Учебный процесс -
Физика -
Философия -
Финансы -
Химия -
Художественные науки -
Экология -
Экономика -
Энергетика -
Юриспруденция -
Языкознание -