<<
>>

Тема 4 Решение систем линейных уравнений.

(4.1)

Дана система линейных уравнений (СЛУ) с n неизвестными:

В матричной форме записи система (4.1) имеет вид:

(4.2)

где : n – порядок системы;

– матрица коэффициентов системы;

– вектор свободных членов; – вектор неизвестных;

В свернутой форме записи СЛУ имеет вид:

(4.3)

Система называется обусловленной (не вырожденной, не особенной), если определитель системы DA ? 0, и тогда система (4.1) имеет единственное решение.

Система называется не обусловленной (вырожденной, особенной), если DA = 0, и тогда система (4.1) не имеет решений или имеет бесконечное множество решений.

На практике коэффициенты системы aij и свободные члены bi часто задаются приближенно, с некоторой неустранимой погрешностью. Поэтому, кроме существования и единственности решения СЛУ, важно еще знать, как влияет такая погрешность на получаемое решение.

Система называется плохо обусловленной, если неустранимая погрешность оказывает сильное влияние на решение; у таких систем определитель близок, но не равен 0.

Рассмотрим пример плохо обусловленной системы.

Дана система

Решение ;

Пусть b2 имеет неустранимую погрешность %.

Если b2 = 1,01, то

Если b2 = 0,99, то

Решение изменяется очень сильно, следовательно, система плохо обусловлена, о чем говорит значение её определителя.

Рассмотрим геометрическую иллюстрацию обусловленности СЛУ на примере системы двух уравнений с двумя неизвестными:

a11 x1+ a12 x2 = b1 уравнение (I)

a21 x1+ a22 x2= b2 уравнение (II)

Рис. 4.1. Геометрическая иллюстрация обусловленности СЛУ.

Каждому уравнению в плоскости (x1,x2) соответствует прямая, а точка пересечения этих прямых является решением этой системы. Если ΔA = 0, то наклоны прямых одинаковы, и они либо параллельны (т.е. не имеют решения), либо совпадают (имеют бесконечное множество решений). Если ΔA ? 0, то прямые имеют единственную точку пересечения.

Но если система плохо обусловлена (∆А≈0), даже незначительное изменение одного из коэффициентов приведет к сильному изменению решения системы, т.к. прямые почти параллельны.

Для решения СЛУ широко применяться прямые и итерационные методы. Область применения некоторых из них показана в таблице.

Тип Название метода Число арифметических действий (при n = 20) Область примененения
Прямые Формулы Крамера ~ () n
<< | >>

Еще по теме Тема 4 Решение систем линейных уравнений.: