<<
>>

Д. Схема упорядоченных разбиений

Пусть множество E состоит из m различных элементов. Рассмотрим опыт, состоящий в разбиении множества E случайным образом на s подмножеств E1, E2, ..., Es таким образом, что:

1.

Множество Еi содержит ровно ni элементов, где i = 1, 2, ..., s.

2. Множества Еi упорядочены по количеству элементов ni.

3. Множества Еi, содержащие одинаковое количество элементов, упорядочиваются произвольным образом. Например, при n = 7, n1 = 2, n2 = 2, n3 = 3 разбиения {E1 = {e1, е2}, Е2 = {e3, е4}, Е3 = {e5, е6, e7}} и {E1 ={e3, е4}, Е2 ={e1, е2}, Е3 = {e5, е6, e7}} являются различными исходами данного опыта.

Число всех элементарных исходов в данном опыте определяется формулой

N(W) = n!/(n1! ? n2! ? ... ? ns!).

Пример 5. Десять приезжих мужчин, среди которых Петров и Иванов, размещаются в гостинице в два трехместных и один четырехместный номер. Сколько существует способов их размещения? Какова вероятность того, что Петров и Иванов попадут в четырехместный номер?

Решение. Разбиения в данном опыте характеризуются следующими параметрами: s = 3, n = 10, n1 = 3, n2 = 3, n3 = 4. Тогда N(W) = 10!/(3!?3!?4!) = 4200.

Пусть событие А - Петров и Иванов попадут в одни четырехместный номер. Благоприятствующие событию А исходы соответствуют разбиениям со следующими параметрами: s = 3, n = 8, n1 = 3, n2 = 3, n3 = 2. Тогда N(A) = 8!/(3!?3!?2!) = 560. Искомая вероятность Р(A) = N(A)/N(W) = 560/4200 = 2/15.

<< | >>
Источник: Ответы по теории вероятности. 2017

Еще по теме Д. Схема упорядоченных разбиений: