<<
>>

Комбинаторный метод вычисления вероятностей

При подсчете числа элементарных исходов, составляющих события в классической схеме, часто используются известные формулы комбинаторики. Каждая из комбинаторных формул определяет общее число элементарных исходов в некотором идеализированном эксперименте по выбору наудачу m элементов из n различных элементов исходного множества E = {e1, e2, ..., en}.

При постановке каждого такого эксперимента строго оговорено, каким способом производится выбор и что понимается под различными выборками. Существуют две принципиально отличные схемы выбора: в первой схеме выбор осуществляется без возвращения элементов (это значит, что отбираются либо сразу все m элементов, либо последовательно по одному элементу, причем каждый отобранный элемент исключается из исходного множества). Во второй схеме выбор осуществляется поэлементно с обязательным возвращением отобранного элемента на каждом шаге и тщательным перемешиванием исходного множества перед следующим выбором. После того, как выбор тем или иным способом осуществлен, отобранные элементы (или их номера) могут быть либо упорядочены (т.е. выложены в последовательную цепочку), либо нет. В результате получаются следующие четыре различные постановки эксперимента по выбору наудачу m элементов из общего числа n различных элементов множества Е.

<< | >>
Источник: Ответы по теории вероятности. 2017

Еще по теме Комбинаторный метод вычисления вероятностей: