7.5 О возможной связи неархимедовой геометрии с анизотропией реликтового излучения 7.5.1 Фрактальная геометрия распределения массы во Все-ленной
Астрономические наблюдения указывают на то, что неархимедова, а более точно фрактальная, геометрия является неотъемлемым свойством Вселенной. Суперкластеры (большие кластеры включающие от сотен до тысяч галактик) имеющие размер порядка 50 Мпс разделены фактически пустым пространством - среднее расстояние между суперкластерами составляет порядка 100 Мпс.
Кластеры, имеющие характерный размер порядка 5 Мпс, включающие сотни галактик, также разделены пустотами порядка нескольких мегапарсек. Такая же154 фрактальная структура прослеживается и на ядерных масштабах вплоть до 10~13см.
Количественно крупномасштабная фрактальная структура Вселенной может быть описана в терминах полной массы, заключенной внутри сферического объема радиуса г, или, что то же самое, хаусдорфовой размерности, вычисленной для распределения массы.
Типичная зависимость массы, заключенной внутри сферического объема от радиуса сферы, измеренная по линии эмиссии водорода (21см) газовыми облаками обращающимися вокруг галактики, имеет вид
М(г) ос ra, а « 1. (7.18)
При этом вклад обычной (светящейся) массы составляет всего лишь г-1/2, а все остальное приходится на так называемую темную материю [153]. Поскольку показатель степени в законе распределения массы (7.18) меньше размерности пространства a < 3, можно говорить о фрактальной структуре, вложенной в трехмерное пространство.
С другой стороны, современные достижения в области квантовой гравитации связаны именно с регуляризацией квантовой гравитации на фрактальных мно-жествах (поверхностях) [101]. Это позволяет надеяться, что фрактальная структура является фундаментальным свойством физического пространства-времени. В данном параграфе, используя геометрическую интерпретацию рассмотренных ранее р-адических моделей, мы попытаемся связать имеющиеся данные по анизо-тропии микроволнового реликтового излучения с фрактальными структурами, связанными с самоподобным делением симплекса. Здесь мы будем следовать работе [20], основанной на данных эксперимента СОВЕ.