<<
>>

Стратегическое и тактическое планирование.

Мы определили имитационное моделирование как экспериментирование с помощью модели с целью получения информации о реально действующей системе. Отсюда следует, что мы должны позаботиться о стратегическом планировании, т.

е. о том, как планировать эксперимент, который дает желаемую информацию. Планирование экспериментов широко применяется в биологических и физических науках, а теперь и в моделировании систем. Цель использования планируемых экспериментов двоякая: 1) они обеспечивают экономию с точки зрения уменьшения числа требуемых экспериментальных проверок и 2) они задают структурную основу обучения самого исследователя.

Цель любого экспериментального исследования, включая моделирование, заключается в том, чтобы больше узнать об изучаемой системе. Эксперимент представляет собой процесс наблюдения и анализа, который "позволяет получить информацию, необходимую для принятия решений. План эксперимента дает возможность выбрать метод сбора исходной информации, содержащей необходимые сведения о явлении или системе, которые позволяют сделать важные выводы о поведении изучаемого объекта. В экспериментальном

исследовании можно выделить два типа задач: 1) определение сочетания параметров, которое оптимизирует переменную отклика, и 2) объяснение соотношения между переменной отклика и контролируемыми в системе факторами. Для обеих этих задач разработано и доступно для использования множество планов постановки экспериментов.

Тактическое планирование, вообще говоря, связано с вопросами эффективности и определением способов проведения испытаний, намеченных планом эксперимента. Тактическое планирование прежде всего связано с решением задач двух типов: 1) определением начальных условий в той мере, в какой они влияют на достижение установившегося режима, и 2) возможно большим уменьшением дисперсии решений при одновременном сокращении необходимых размеров выборки [47, 56, 57, 58, 59, 61].

Первая задача (т.

е. определение начальных условий и их влияния на достижение установившегося режима) возникает вследствие искусственного характера функционирования модели. В отличие от реального объекта, который представлен моделью, сама имитационная модель работает эпизодически. Это значит, что экспериментатор запускает модель, делает свои наблюдения и <останавливает> ее до следующего прогона. Всякий раз, когда начинается прогон, модели требуется определенное время для достижения условий равновесия, которые соответствуют условиям функционирования реальной системы. Таким образом, начальный период работы модели искажается из-за действия начальных условий запуска модели. Для решения задачи, во-первых, необходимо исключить из рассмотрения данные, относящиеся к некоторой части начального периода, и, во-вторых, следует выбирать такие начальные условия, которые уменьшают время, необходимое для достижения установившегося режима. Разумно выбранные начальные условия могут уменьшить, но не полностью свести к нулю время переходного процесса. Поэтому дополнительно необходимо определить время начала измерений [47, 56, 57, 58, 59, 61].

Вторая задача тактического планирования связана с необходимостью оценить точность результатов эксперимента и степень надежности заключений или выводов. Это немедленно ставит нас лицом к лицу с такими вопросами, как изменяемость условий, размер выборки и повторяемость результатов. В любом эксперименте из ограниченного объема полученных данных мы стремимся извлечь как можно больше информации. Для уменьшения разброса характеристик было предложено несколько методов (в основном в связи с процедурами взятия выборок), которые могут существенно снизить требуемый размер выборки и число повторений эксперимента. Использование очень больших выборок может в конечном счете решить все тактические проблемы имитационного моделирования, но обычно ценой больших затрат машинного времени и времени, необходимого для последующего анализа результатов.

Чем сложнее имитационная модель, тем более важен этап тактического планирования, выполняемого перед проведением экспериментов [47, 56, 57, 58, 59, 61].

Экспериментирование и анализ чувствительности. После завершения этапов разработки и планирования мы, наконец, осуществляем прогон модели с целью получения желаемой информации. На этом этапе мы начинаем находить недостатки и просчеты в нашем планировании и повторяем наши усилия до тех пор, пока не достигнем первоначально поставленных целей.

Одним из наиболее важных понятий в имитационном моделировании является анализ чувствительности. Под ним мы понимаем определение чувствительности наших окончательных результатов к изменению используемых значений параметров. Анализ чувствительности обычно заключается в том, что величины параметров систематически варьируются в некоторых представляющих интерес пределах и при этом наблюдается влияние этих вариаций на характеристики модели. Почти в любой имитационной модели многие переменные рождаются на основании весьма сомнительных данных. Во многих случаях их значения могут быть определены только на основе предположений опытного персонала или с помощью весьма поверхностного анализа некоторого

минимального объема данных. Поэтому чрезвычайно важно определить степень чувствительности результатов относительно выбранных для исследования величин. Если при незначительных изменениях величин некоторых параметров результаты меняются очень сильно, это может служить основанием для затраты большего количества времени и средств с целью получения более точных оценок. В то же время, если конечные результаты при изменениях величин параметров в широких пределах не изменяются, то дальнейшее экспериментирование в этом направлении неоправданно и не является необходимым [47, 56, 57, 58, 59, 61].

<< | >>
Источник: Кузнецов Василий Юрьевич. АВТОМАТИЗАЦИЯ ТЕХНОЛОГИЙ ПРОИЗВОДСТВА АРМИРОВАННЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ И ПОКРЫТИЙ ДЛЯ КОНСТРУКЦИЙ ЛЕТАТЕЛЬНЫХАППАРАТОВ. 2003

Еще по теме Стратегическое и тактическое планирование.: