<<
>>

Пример 3. Целевое программирование

Провести оптимизацию вектор – функции

при ограничениях

Рис.

5.3. Данные для решения примера 3.

Решение. Введем данные на рабочий лист в соответствии с Рис. 5.3.

Отведем под значения переменных ячейки A20 и B20; введем формулы, определяющие ограничения задачи, в ячейки A16:A17; формулы для расчета функций в ячейки E20, G20 и I20, а формулу для расчета - в ячейку C28. Поскольку наши функции нелинейны, в окне диалога Параметры поиска решения необходимо снять флажок (указатель) линейная модель.

Далее последовательно проводим поиск оптимальных (максимальных) значений функций (целевыми ячейками выбираем E20, G20 и I20); после нахождения оптимальных значений каждой из функций ее максимальное значение заносим (используя специальную вставку) в ячейки E24, G24 и I24 соответственно. Таким образом, в ячейках окажутся значения: 1.0748 (E24), 0.7357 (G24), 2 (I24).

После этого переходим к заключительному этапу. Оптимизируем (минимизируем) значение целевой функции (целевая ячейка С28). Поиск решения дает для оптимального значения целевой функции значение 0,32534.

При этом в ячейках E20, G20 и I20 окажутся значения функций , соответствующие значениям , при которых отклонение от будет минимальным.

Таким образом, при данных значениях весовых коэффициентов мы получаем следующие оптимальные (с точки зрения достижения оптимального значения “совокупной” функции ) значения компонент вектор функции:

1,0748 0,7815 0,7358 0,3609 2 1,6784

Из вышеприведенной таблицы видно, что в результате оптимизации значения всех трех функций-составляющих уменьшились. Естественно, при использовании других весовых коэффициентов мы получили бы другие значения (но при любых значениях весовых коэффициентов тенденция уменьшения всех компонент вектор-функции сохраняется).

Следует отметить, что задача целевого программирования может формулироваться несколько иным образом.

ЛПР может просто указать, исходя из своих соображений, желательные с его точки зрения, значения , или диапазоны, в которых эти значения должны быть локализованы. При этой постановке задача решается практически аналогично, с тем отличием, что поиск оптимальных значений компонент (первая часть решения) не проводится, а их значения (или диапазоны изменения) вводятся в качестве ограничений дополнительно к исходным ограничениям задачи.

Контрольные вопросы к теме:

1. Понятие векторного критерия

2. Типы многокритериальных задач

3. Проблемы нормализации, выбора принципа оптимальности, учета приоритета критериев, вычисления оптимума

4. Перечислите способы преобразований критериев к безразмерному виду

5. Принцип оптимальности Парето

6. Принцип равновесия по Нэшу

7. Перечислите главные особенности равновесных (по Нэшу) ситуаций

8. Конфликты, переговоры и компромиссы

9. Методы решения задач векторной оптимизации

<< | >>
Источник: Теория принятия решений. Учебный курс. 2003

Еще по теме Пример 3. Целевое программирование: