<<
>>

Водород и кислород

Одновременно с Блэком и Резерфордом успехов в изучении газов добились два других английских химика — Кавендиш и Пристли, также принадлежавшие к числу сторонников флогистонной теории.

Генри Кавендиш (1731—1810) был богатым чудаком, который занимался исследованиями в самых различных областях.

Замкнутый по натуре, он не всегда публиковал результаты проведенных' им работ. К счастью, результаты своих работ с газами он все же опубликовал.

Кавендиша (возможно, под влиянием Дж. Блэка) особенно заинтересовал газ, образующийся при взаимодействии кислот с некоторыми металлами. Ранее этот газ был выделен Бойлем и Гейлсом, .а возможно, и другими исследователями, но Кавендиш первым в 1766 г. провел систематическое изучение его свойств, поэтому ему обычно и приписывается честь открытия этого газа, получившего название водород.

Кавендиш первым установил вес определенных объемов различных газов и в результате сумел установить плотность каждого из «их. Он обнаружил, что водород необычайно легок и что его плотность составляет лишь 1/14 плотности воздуха. (И в настоящее время это самый легкий из известных нам газов.) Как выяснилось, водород обладает еще одним необычным свойством: в отличие от углекислого газа и собственно воздуха он легко воспламеняется, и Кавендиш не исключал вероятности того, что он получил сам флогистон.

Вторым химиком, добившимся успехов в изучении газов, был Джозеф Пристли (1733—1804) — протестантский священник, глубоко увлеченный химией. В конце 60-х годов XVIII в. он принял пасторство в Лидсе (Англия). Рядом с Лидсом находился пивоваренный завод, откуда Пристли мог получать углекислый газ в количествах, достаточных для проведения опытов (углекислый га^ образуется при брожении пивного сусла).

Собирая углекислый газ над водой, Пристли обнаружил, что часть газа растворяется в воде и придает ей приятный терпкий привкус.

По сути дела Пристли получил напиток типа сельтерской ил» содовой воды. Поскольку для получения «ситро» необходимо прибавить только сахар и ароматизировать напиток, Пристли можно считать отцом современной индустрии безалкогольных напитков.

В начале 70-х годов XVIII в., когда Пристли вновь занялся изучением газов, химики четко различали только три газа — собственно воздух, углекислый газ Ван Гельмонта и Блэка и водород, Кавендиша; Резерфорд был близок к открытию четвертого газа — азота. Пристли сопутствовала удача: он выделил и изучил еще ряд. газов.

Опыты Пристли с углекислым газом показали, что газы могут растворяться в воде и, следовательно «теряться», поэтому он по-пытался собирать газы не над водой, а над ртутью. Таким образом* Пристли сумел собрать и изучить такие газы, как оксид азота (I), аммиак, хлорид водорода и диоксид серы (мы даем современные- названия газов). Все эти газы настолько хорошо растворяются в воде, что, проходя через нее, полностью поглощаются.

В 1774 г. Пристли сделал, возможно, самое важное свое открытие. Как уже говорилось выше, он собирал газы над ртутью. При нагревании на воздухе ртуть образует кирпично-красную «окалину»- (оксид ртути). Пристли клал немного окалины в пробирку и нагревал ее, фокусируя на ней с помощью линзы солнечные лучи. Окалина при этом вновь превращалась в ртуть, и в верхней части пробирки появлялись блестящие шарики металла. При разложении окалины выделялся газ с весьма необычными свойствами. Горючие вещества горели в этом газе быстрее и ярче, чем на воздухе. Тлеющая, лучина, брошенная в сосуд с этим газом, вспыхивала ярким пламенем.

Пристли пытался объяснить это явление, используя теорию» флогистона. Поскольку горючие вещества горели в этом газе весьма ярко, то они должны были очень легко выделять флогистон. Чем объяснить это? Как следует из теории флогистона, воздух легко поглощает флогистон, но до определенного предела, после чего горение прекращается. В открытом Пристли газе горение шло* лучше, чем в воздухе, и он решил, что этот газ совсем не содержит флогистона.

Пристли назвал открытый им газ «дефлогистированньш воздухом». (Однако через несколько лет его переименовали в кислород-, этим названием мы пользуемся и сегодня.)

«Дефлогистированный воздух» Пристли казался своего рода антиподом «флогистированного воздуха» Резерфорда. В последнем газе мыши умирали, тогда как в первом были весьма деятельными.

Пристли сам попробовал подышать «дефлогистированным возду-хом» и почувствовал при этом себя «легко и свободно».

Однако в открытии кислорода и Резерфорда и Пристли опередил шведский химик Карл Вильгельм Шееле (1742—1786) — представитель той плеяды химиков, которые вывели Швецию в XVIII в. на передовые позиции науки.

Приблизительно в 1735 г. шведский химик Георг Брандт (1694— 1768) начал изучать голубоватый минерал, напоминавший медную руду. Несмотря на такое сходство, получить из этого минерала медь при обычной обработке не удавалось. Рудокопы полагали, что эта руда заколдована земными духами «кобольдами». В 1742— 1744 гг. Брандт сумел показать, что голубоватый минерал содержит не медь, а совершенно иной металл, напоминающий по своим химическим свойствам железо. Этот металл получил название кобальт.

В 1751 г. Аксель Фредрик Кронстедт (1722—1765) открыл новый металл никель, очень похожий на кобальт; Иоганн Готлиб Ган (1745—1818) выделил в 1774 г. марганец, а Петер Якоб Гьельм >(1746—1813) получил в 1782 г. молибден.

'Рис. 6. Паяльная трубка, введенная в лабораторную практику шведским химиком Кронстедтом (1722—1765), более века была ключевым инструментом химического -анализа; этот метод используется до сих пор. Струя воздуха повышает температуру шламени и может менять его направление.

Кронстедт при изучении минералов впервые применил паяльную трубку (рис. 6). Это была длинная постепенно сужающаяся трубка, из узкого конца которой выходила струя сжатого воздуха.

Когда такую струю направляли в пламя, температура его повышалась. Минералы, нагреваемые в пламени паяльной трубки, окрашивали его в различные цвета, поэтому по цвету пламени можно- было судить о природе и составе минерала, о природе образовавшихся паров и твердого остатка.

На протяжении столетия паяльная трубка оставалась основным инструментом химического анализа.

Благодаря использованию новых технических приемов, подобных анализу в пламени паяльной трубки, химикам удалось накопить достаточно много данных о минералах. Исходя из этих данных, Кронстедт вполне справедливо полагал, что минералы следует классифицировать не только в соответствии с их внешним видом, но и в соответствии с их химической структурой. В 1758 г. он выпустил книгу «Система минералогии», в которой детально описал новую систему классификации.

Эта работа была продолжена другим шведским минералогом Торберном Улафом Бергманом (1735—1784). Бергман развил теорию, объясняющую, почему одно вещество реагирует с другим веществом, но не реагирует с третьим. Он же предположил, что между веществами существует «сродство» (affinities), и составил тщательно выверенные таблицы различных величин сродства. Эти таблицы пользовались широкой известностью при жизни их создателя и пережили его на несколько десятилетий.

Шееле, еще будучи помощником аптекаря, обратил на себя внимание Бергмана, который помогал ему и поддерживал его. Шееле открыл ряд кислот растительного и животного происхождения, в том числе винную, лимонную, бензойную, яблочную, щавелевую, галловую, молочную, мочевую, а также такие минеральные кислоты, как молибденовая и мышьяковая.

Шееле получил и изучил три сильно ядовитых газа: фторид водорода, сульфид водорода и цианид водорода. (Предполагают, что его ранняя смерть явилась результатом медленного отравления химикалиями, так как он имел обыкновение пробовать на вкус: те вещества, с которыми работал.)

Шееле был в числе тех химиков, исследования которых привел» к открытию многих элементов, и пользовался большим уважением шведских коллег. Наиболее важные его открытия — получение кислорода и азота (соответственно в 1771 и 1772 гг.). Шееле получал кислород, нагревая вещества, непрочно его удерживающие. В частности, он нагревал тот самый красный оксид ртути, которым несколько лет спустя воспользовался Пристли.

Шееле подробно описал свои опыты по получению и столь же подробно описал свойства «огненного воздуха» (так он называл кислород), но из-за небрежности его издателя эти описания не появлялись в печати до 1777 г.

К этому времени вышли труды Резерфорда и Пристли, которые и завоевали честь первооткрывателей.

Триумф измерения

К концу XVIII в. был накоплен большой экспериментальный материал, который необходимо было систематизировать в рамках единой теории. Создателем такой теории стал французский химик Антуан-Лоран Лавуазье (1743—1794). С самого начала своей деятельности на поприще химии Лавуазье понял важность точного измерения. Его первая значительная работа (1764 г.) была посвящена изучению состава минерального гипса. Нагревая этот минерал, Лавуазье удалял из него воду и определял количество полученной таким образом воды. Лавуазье принял сторону тех химиков, которые, подобно Блэку и Кавендишу, применяли измерение при изучении химических реакций. Однако Лавуазье использовал более систематический подход, что позволило ему доказать несостоятель-ность старых теорий, уже не только бесполезных, но и мешавших развитию химии.

Даже в 1770 г. ряд ученых придерживались старого определения элементов и утверждали, что трансмутация возможна, поскольку воду, например, при длительном нагревании можно превратить в землю. Предположение о возможности превращения воды в землю считалось справедливым (вначале даже самим Лавуазье), так как при длительном нагревании воды (в течение нескольких дней) в стеклянном сосуде образовывался твердый осадок.

Лавуазье решил проверить возможность превращения воды экспериментальным путем. С этой целью он в течение 101 дня кипятил воду в сосуде, в котором водяной пар конденсировался и возвращался обратно в колбу, так что возможность какой-либо потери вещества в процессе опыта была исключена. И, разумеется» Лавуазье не забывал о точности эксперимента. Он взвешивал и сосуд и воду до и после нагревания.

Осадок при этом действительно появился, но вес воды не изменился. Следовательно, вода не могла образовать осадок. Однако вес самого сосуда, как выяснилось, уменьшился как раз на столько, сколько весил осадок. Другими словами, осадок появился не в результате превращения воды в землю, а в результате медленного разъедания стеклянных стенок сосуда горячей водой.

Осадок обра-зовывало выщелоченное стекло, осаждавшееся в виде твердых пла-стинок. Этот пример наглядно показывает, что простое наблюдение может привести к ошибочным выводам, тогда как количественное измерение позволяет установить истинные причины явления.

Вопрос о том, что такое процесс горения, интересовал всех химиков XVIII в., и Лавуазье также не мог не заинтересоваться им. В 60-х годах XVIII в. он получил золотую медаль за исследование, посвященное улучшению способов уличного освещения. В 1772 г. Лавуазье в складчину с другими х-имиками приобрел алмаз. Он поместил этот алмаз в закрытый сосуд и нагревал до тех пор, пока алмаз не исчез. При этом образовался углекислый газ. Таким образом было убедительно доказано, что алмаз состоит из углерода и, следовательно, алмаз ближе всех других веществ к углю.

Продолжая свои опыты, Лавуазье нагревал в закрытых сосудах с ограниченным объемом воздуха такие металлы, как олово и свинец. Сначала на поверхности обоих металлов образовывался слой окалины, но в определенный момент ржавление прекращалось. Сторонники теории флогистона сказали бы, что воздух поглотил из металла весь содержащийся в нем флогистон. В то время уже до-подлинно было известно, что окалина весит больше, чем сам металл; однако, когда после нагревания Лавуазье взвесил сосуд вместе со всем содержимым (металлом, окалиной, воздухом и пр.), оказалось, что он весит ровно столько же, сколько и до нагревания.

Из этих данных следовало, что, если частично превратившись в окалину, металл увеличил свой вес, то что-то еще из содержащегося в сосуде потеряло эквивалентное количество веса. Это «что-то еще» могло быть и воздухом. Однако в этом случае в сосуде должен был образоваться вакуум. Действительно, когда Лавуазье открыл сосуд, туда устремился воздух, и вес сосуда и его содержимого увеличился.

Таким образом Лавуазье показал, что металл превращается в окалину не в результате потери мистического флогистона, а вследствие присоединения порции самого обычного воздуха.

Это открытие позволило выдвинуть новую теорию образования металлов и руд. Согласно этой теории, в руде металл соединен с газом. Когда руду нагревают на древесном угле, уголь адсорбирует газ из руды; при этом образуются углекислый газ и свободный металл.

Таким образом, в отличие от Шталя, который считал, что плавка металла включает переход флогистона из древесного угля в руду, Лавуазье представлял себе этот процесс как переход газа из руды в уголь. Однако имело ли смысл толкование Лавуазье предпочесть толкованию Шталя? Да, имело, поскольку предположение Лавуазье о переходе газа позволяло объяснить причины изменения веса веществ в результате горения.

Окалина тяжелее металла, из которого она образовалась, ровно на столько, сколько весит соединившееся с металлом количество воздуха. Горение дерева также сопровождается присоединением воздуха, но увеличения веса в этом случае не наблюдается, так как образовавшееся новое вещество — углекислый газ улетучивается в атмосферу. Оставшаяся зола легче сгоревшего дерева. Если бы горение дерева проходило в закрытом сосуде и образующиеся при этом газы оставались бы в сосуде, тогда можно было бы показать, что вес золы плюс вес образовавшихся газов плюс вес того, что осталось от воздуха, равняется начальному весу дерева и воздуха.

Обдумывая результаты проведенных им опытов, Лавуазье пришел к мысли, что если учитывать все вещества, участвующие в хи-мической реакции, и все образующиеся продукты, то изменения в весе никогда наблюдаться не будет (Говоря более точным языком физиков, не произойдет изменения массы.) Другими словами, Лавуазье пришел к выводу, что масса никогда не создается и не уничтожается, а лишь переходит от одного вещества к другому. Это положение, известное как закон сохранения массы, стало крае-угольным камнем химии XIX в.

Успехи, достигнутые Лавуазье благодаря использованию метода количественных измерений, были настолько велики и очевидны, что этот метод был безоговорочно принят всеми химиками.

<< | >>
Источник: А. Азимов. КРАТКАЯ ИСТОРИЯ ХИМИИ. 1983

Еще по теме Водород и кислород: