<<
>>

4.5. Вынужденные колебания

Колебания можно сделать незатухающими, если компенсировать потери, то есть в процессе колебаний подводить к колеблющемуся телу энергию. Последнее можно делать двумя способами.

1) Подводить энергию с помощью постоянной силы.

Возникающие при этом колебания носят название автоколебаний. Такими будут, например, колебания скрипичной струны под действием смычка, волны на воде при ветре и др. Примерами автоколебательной системы могут служить часовые механизмы и колебательные контуры в радиопередатчиках. Основной закон динамики в случае одномерных автоколебаний можно представить в виде:

, где F = const. (4.30)

2) Подводить энергию за счет переменной силы, которая изменяется по гармоническому закону:

, (4.31)

где Fm – амплитуда вынуждающей силы.

Уравнение показывает, что частота изменения вынуждающей силы есть w. Эта частота совершенно не обязательно должна совпадать с частотой колебаний wо, свойственных самой системе.

Интересен вопрос, при каком соотношении между w и wо колебания будут происходить с наибольшей амплитудой. Для ответа на этот вопрос следует прежде всего помнить, что под воздействием внешней периодической силы тело будет колебаться не с частотой wо , а с частотой вынуждающей силы – w:

. (4.32)

Начальная фаза показывает, что колебания (вынужденные колебания) не совпадают по фазе с колебаниями вынуждающей силы, отстают от неё на jо.

Динамическое уравнение вынужденных колебаний в проекции на ось, вдоль которой происходят колебания, запишется так:

. (4.33)

Заменяя x по (4.32), а ускорение и скорость – соответствующими производными этой функции, получим:

, (4.34)

где буквой j = (wt – jо) обозначена фаза колебаний.

Оставляя вынуждающую силу в левой части уравнения и перенося остальное в правую, будем иметь:

. (4.35)

Последнее уравнение может служить основанием для построения векторной диаграммы, у которой опорная ось совпадает с вынуждающей силой.

Откладывая сначала амплитуду квазиупругой силы kxm, запаздывающей по отношению к вынуждающей силе на угол j о, затем амплитуду силы трения, сдвинутую по фазе относительно смещения на p/2, и, наконец, амплитуду произведения массы на ускорение, которая противоположна смещению, получим векторную диаграмму, на которой изображены четыре вектора (рис. 4.6).

Сложение векторов следует начать с двух противоположных друг другу векторов kxm и . Сумма их, найденная по диаграмме, выделена жирной чертой и равна разности длин этих векторов . Далее строится прямоугольник, диагональю которого будет Fm , как того требует уравнение (4.35). По теореме Пифагора

, (4.36)

откуда можно найти амплитуду вынужденных колебаний:

.

(4.37)

Из полученного равенства следует, что при w = wо амплитуда вынужденных колебаний имеет максимум. Явление резкого увеличения амплитуды вынужденных колебаний при совпадении частот носит название резонанса, а график зависимости амплитуды от частоты (рис. 4.7) называется резонансной кривой. Резонансная кривая в зависимости от величины коэффициента сопротивления может быть либо высокой и острой (при малом затухании), либо более пологой.

<< | >>
Источник: Н.М. Соколова, В.И. Биглер. ФИЗИКА. Курс лекций. Часть 1. Челябинск. Издательство ЮурГУ. 2001

Еще по теме 4.5. Вынужденные колебания: