<<
>>

§5.1. РАБОТА В ТЕРМОДИНАМИКЕ

В главе 3 мы познакомились с различными процессами, при которых меняется состояние термодинамической системы. У нас речь шла преимущественно об изменении состояния идеального газа при изотермическом, изобарном и изохорном процессах.

Для дальнейшего рассмотрения термодинамических процессов нужно детально исследовать, в результате каких внешних воздействий может меняться состояние любой термодинамической системы. Имеется два существенно различных вида воздействий, которые приводят к изменению состояния системы, т. е. к изменению термодинамических параметров — давления р, объема V, температуры Т, характеризующих состояние. Первый из них — это совершение работы.

Работа в механике и термодинамике

В механике рассматривается движение макроскопических тел. Работа определяется как произведение модулей силы и перемещения и косинуса угла между направлениями силы и перемещения. Работа совершается при действии силы или нескольких сил на движущееся макроскопическое тело и равна изменению его кинетической энергии.

В термодинамике движение тела как целого не рассматривается и речь идет о перемещении частей макроскопического тела друг относительно друга. При совершении работы меняется объем тела, а его скорость остается равной нулю. Но скорости молекул тела, например газа, меняются. Поэтому меняется и температура тела.

Причина состоит в следующем: при упругих соударениях молекул с движущимся поршнем (для случая сжатия газа) их кинетическая энергия изменяется. Так, при движении навстречу молекулам поршень во время столкновений передает им часть своей механической энергии, в результате чего газ нагревается. Поршень действует подобно футболисту, встречающему летящий мяч ударом ноги и сообщающему мячу скорость, значительно большую той, которой он обладал до удара*.

И наоборот, если газ расширяется, то после столкновения с удаляющимся поршнем скорости молекул уменьшаются, в результате чего газ охлаждается.

Так же действует футболист: чтобы уменьшить скорость летящего мяча или остановить его, нога футболиста движется от мяча, как бы уступая ему дорогу.

Итак, при совершении работы в термодинамике меняется состояние макроскопических тел: меняется их объем и температура.

Вычисление работы

Вычислим работу в зависимости от изменения объема на примере газа в цилиндре под поршнем (рис. 5.1). Проще всего вначале вычислить не работу силы F, действующей на газ со стороны внешнего тела (поршня), а работу, которую совершает сам газ, действуя на^поршень с силой F'. Согласно третьему закону Ньютона F = -F'. LL

Ah I 1

і F'

"1 I ' F Ah

h2

h

h

Рис. 5.1 Рис. 5.2

Модуль силы, действующей со стороны газа на поршень, равен F' = pS, где р — давление газа, a S — площадь поверхности поршня. Пусть газ расширяется и поршень смещается в направлении силы на малое расстояние Ah — h2 - ht. Если перемещение мало, то давление газа можно считать постоянным.

Работа газа равна

А' = F'Ah = pS(h2 - йх) = p(Sh2 - Sh(5.1.1)

Эту работу можно выразить через изменение объема газа. Начальный объем = Shly а конечный V2 = Sh2. Поэтому

A^piVz-VJ^pAV,

где AV =V2-V1 — изменение объема газа.

При расширении газ совершает положительную работу, так как направления силы и перемещения поршня совпадают.

Если газ сжимается, то формула (5.1.2) для работы газа остается справедливой. Но теперь V2 < Vx, и поэтому А' < О (рис. 5.2).

Работа А, совершаемая внешними телами над газом, отличается от работы газа А' только знаком: А = -А', так как сила F, действующая на газ, направлена против силы F", а перемещение остается тем же самым. Поэтому работа внешних сил, действующих на газ, равна

А = -А' = -pAV. (5.1.3)

Знак минус указывает, что при сжатии газа, когда ДУ = = V2 — Vj < 0, работа внешней силы положительна. Понятно, почему в этом случае А > 0: при сжатии газа направления силы и перемещения совпадают. При расширении газа, наоборот, работа внешних тел отрицательна (А < 0), так как AV = = V2 ~ V1 > 0.

Теперь направления силы и перемещения противоположны .

Выражения (5.1.2) и (5.1.3) справедливы не только при сжатии или расширении газа в цилиндре, но и при малом изменении объема любой системы. Если процесс изобарный (р = const), то эти формулы можно применять и для больших изменений объема.

Геометрическое истолкование работы

Работе газа А для случая постоянного давления можно дать простое геометрическое истолкование.

V

Рис. 5.4

Рис. 5.3

В общем случае при произвольном изменении объема газа давление не остается неизменным. Например, при изотермическом процессе оно убывает обратно пропорционально объему (рис. 5.4). В этом случае для вычисления работы нужно общее изменение объема разделить на малые части, вычислить элементарные (малые) работы, а потом все их сложить. Работа газа по-прежнему будет численно равна площади фигуры, ог-

Построим график зависимости давления газа от объема (рис. 5.3). Здесь площадь прямоугольника abed, ограниченная графиком рх = const, осью V и отрезками ab и cd, равными давлению газа, численно равна работе (5.1.2).

раниченной графиком зависимости р от V, осью V и отрезками ab и cd, равными давлениям р1 и р2 в начальном и конечном состояниях.

Работа внешней силы, изменяющей объем газа на AV, равна А = —pAV. Работа самого газа А' = —А = = pAV, где р — давление газа.

<< | >>
Источник: Г.Я.Мякишев, А.3.Синяков. ФИЗИКАМОЛЕКУЛЯРНАЯ ФИЗИКА ТЕРМОДИНАМИКА10. 2010

Еще по теме §5.1. РАБОТА В ТЕРМОДИНАМИКЕ: