§1.20. ПРЯМОЛИНЕЙНОЕ ДВИЖЕНИЕ С ПОСТОЯННЫМ УСКОРЕНИЕМ
Среди разнообразных движений с постоянным уско-рением наиболее простым является прямолинейное движение. Если при этом модуль скорости возрастает, то движение иногда называют равноускоренным, а при уменьшении модуля скорости — равнозамедленным.
Подобного рода движения совершает поезд, отходящий от станции или приближающийся к ней. Равно-ускоренно движется камень, брошенный вертикально вниз, а равнозамедленно — камень, брошенный вертикально вверх.Для описания прямолинейного движения с постоянным ускорением можно обойтись одной осью координат (например, осью X), которую целесообразно направить вдоль траектории движения. В этом случае любая задача решается при помощи двух уравнений:
(1.20.1)
и
2? Проекция перемещения и путь при прямолинейном движении с постоянным ускорением Проекцию на ось X перемещения, равную Ах = х - х0, найдем из уравнения (1.20.2):
М2
Ax = v0xt +(1.20.3)
Если скорость тела (точки) не меняет своего направления, то путь равен модулю проекции перемещения
.2
s = |Ax| =
(1.20.4)
axt
VoJ + -о
Если же скорость меняет свое направление, то путь вычисляется сложнее. В этом случае он складывается из модуля перемещения до момента изменения направления скорости и модуля перемещения после этого момента.
Средняя скорость при прямолинейном движении с постоянным ускорением
Из формулы (1.19.1) следует, что
+ ^ = Ах 2 t '
Ах
Но — — это проекция средней скорости на ось X (см. § 1.12),
т. е. ^ = v. Следовательно, при прямолинейном движении с по- t
стоянным ускорением проекция средней скорости на ось X равна:
!)аг + Vr
vx= 0х2 . (1.20.5)
Можно доказать, что если какая-нибудь другая физическая величина находится в линейной зависимости от времени, то среднее по времени значение этой величины равно полусумме ее наименьшего и наибольшего значений в течение данного промежутка времени.
Если при прямолинейном движении с постоянным ускорением направление скорости не меняется, то средний модуль скорости равен полусумме модулей начальной и конечной скоростей, т.
е.К* + vx\ v0 + v
Связь между проекциями начальной и конечной скоростей, ускорения и перемещения
Согласно формуле (1.19.1)
Лх= °*2 xt. (1.20.7)
Время t выразим из формулы (1.20.1)
Vx~V0x ах
и подставим в (1.20.7). Получим:
Vx + V0x Vx - v0x V2X - i>jj
= 2 ST" --257-
Отсюда
v2x = v Іх+2а3Лх. (1.20.8)
Полезно запомнить формулу (1.20.8) и выражение (1.20.6) для средней скорости. Эти формулы могут по-надобиться для решения многих задач.
? 1. Как направлено ускорение при отправлении поезда от станции (разгон)? При подходе к станции (торможение)?
Начертите график пути при разгоне и при торможении.
Докажите самостоятельно, что при равноускоренном прямолинейном движении без начальной скорости пути, проходимые телом за равные последовательные промежутки времени, пропорциональны последовательным нечетным числам:
Sj: S2* Sg ... = 1: 3: 5: ... . Впервые это было доказано Галилеем.