Модель Б. Холмстрома и ее развитие.
Теорема Холмстрома [140, с.
326] гласит, что в рамках введенных предположений не существует системы стимулирования, которая удовлетворяла бы балансовому ограничению и реализовы- вала бы вектор действий агентов, максимизирующий сумму целевых функций всех агентов и центра, как равновесие Нэша их игры (см. также модель распределения затрат в разделе 7.1). Для существования такой системы стимулирования достаточно предположить, что бюджетное ограничение выполнено как неравенство [140], или что агенты не склонны к риску [164].Основной результат, полученный Б. Холмстромом, заключается в следующем. Не наблюдая индивидуальных действий агентов, а зная только агрегированный результат их деятельности, центр может, налагая на агентов неограниченные штрафы за недостижение требуемого результата, добиться от них выбора действий, приводящих к требуемому результату.
Однако возможность использования штрафов имеет место далеко не всегда, поэтому многие исследователи посвятили свои усилия развитию модели на случай, когда стимулирование может быть только неотрицательным. Работа [154] обобщает модель Холмстрома на случай неизвестных центру типов агентов в отсутствии бюджетного ограничения. При этом доказывается, что в рамках вводимых предположений возможно идеальное агрегирование. В [170] изучаются модели коллективного стимулирования команд в некоммерческих организациях; в [151] - конкурсные механизмы.