<<
>>

1.3.2. Булевы функции

Функция называется функцией алгебры логики.

y=f(x1,x2) – бинарная функция,

y=f(x1,x2,…., xn) – n- арная функция.

Пример.

Т. о. каждое элементарное высказывание может принимать значение либо 0, либо 1. Каждому набору значений a, b, c соответствует одно значение всего сложного высказывания (0 или 1).

Булеву функцию от n переменных можно задать таблицей истинности

x1 ….. xn-1 xn f(x1, …,xn)
0 0 0
0 0 1
1 1 1

Переменные, которые принимают значения 0 или 1 называются булевыми переменными.

Некоторые функции всегда принимают значение 1 (на любом наборе переменных). Такие функции называются тавтологиями. Некоторые функции всегда принимают значение 0 (на любом наборе переменных). Такие функции называются противоречиями.

<< | >>
Источник: Викентьева О. Л.. Математическая логика и теория алгоритмов. Конспект лекций для студентов специальностей АСУ, ЭВТ, КЗИ. Пермь, 2007г.. 2007

Еще по теме 1.3.2. Булевы функции: