Системы линейных уравнений.
Основные понятия.
Система уравнений вида:
называется линейной системой из n уравнений с m неизвестными.
(aij) коэффициенты при неизвестных x1, x2,...,xm
b1,b2,...,bn - свободные члены
Матрица А системы (*) состоит из коэффициентов aij, размера n*m .
Если неизвестные и свободные члены представим в виде:
,
то систему уравнений (*) мы можем переписать в виде: (3)
Запись системы в виде (3) называют матричной формой записи системы линейных уравнений (*) .Следует особо обратить внимание на то, что m может быть неравно n . Если m=n и матрица А является невырожденой , то из соотношения (3) вытекает: (4)
Равенство (4) получается умножением (3) слева на А-1. Система (*) называется совместной, если она имеет по крайней мере одно решение. В противном случае система называется несовместной. Решить систему - означает найти все её решения.