<<
>>

Термодинамика и электромагнетизм

  К рубежу XVTII и XIX вв. ученое сообщество пришло к мысли, что механистическая теория практически полностью сняла все проблемы научной картины мира. Казалось, оправдываются слова, сказанные об авторе «Начал»: «Ньютон был не только величайшим, но и счастливейшим из смертных, ибо систему мира можно создать только один раз».

Явления переноса теплоты объясняли с помощью механической субстанции — теплорода, были придуманы и другие такие жидкости — электрические и магнитные субстанции.

Положение начало меняться в связи с успехами термодинамики. В середине XIX в. Р. Майер, Дж. Джоуль и Г. Гельмгольц открыли закон сохранения энергии. Используя этот закон, А. Эддингтон предложил первую научную теорию, объясняющую, почему горят звезды. Согласно его теории, источник энергии звезд — превращение в тепло энергии гравитационного сжатия. В XX в. стало ясно, что этот механизм недостаточен, необходимо учитывать поступление в недрах звезд энергии, выделяющейся при термоядерной реакции превращения протонов в ядра гелия.

В 1824 г. Сади Карно открыл второе начало термодинамики, т. е. закон возрастания энтропии — меры неупорядоченности систем — во всех необратимых процессах.

Используя этот закон, А. Эддингтон сформулировал критерий, определяющий направление времени во Вселенной: стрела времени есть свойство энтропии и только ее одной.

Другое следствие из второго начала термодинамики сформулировал Р. Клаузиус, выдвинув гипотезу «тепловой смерти» Вселенной: история мира завершится, когда вследствие непрерывно продолжающегося роста энтропии он достигнет состояния термодинамического равновесия, т. е. абсолютного покоя. И тогда стрелка на часах времени упадет — добавил к этому Эддингтон.

Поскольку после работ Канта и Лапласа стало ясно, что мир никогда не был сотворен, то возникал естественный вопрос, почему этого уже не случилось.

Л. Больцман — один из основоположников статистической физики — попытался снять этот парадокс, предположив, что наш мир — это не более чем гигантская флуктуация в необъятной Вселенной, которая в целом давно уже мертва. Действительное решение проблемы удалось получить много позже, используя идеи теорий самоорганизующихся систем.

Все эти открытия существенно обогатили картину мира, но не привели к смене механистической парадигмы. По словам Гельмгольца, научное познание мира будет завершено «по мере того, как будет выполнено сведение явлений природы к простым силам и будет доказано, что это единственно возможное сведение,

которое допускают явления».

Не изменилась эта точка зрения и после того, как Джеймс Кларк Максвелл, обобщая открытия А. Ампера, К. Эрстеда и М. Фарадея, сформулировал законы электромагнетизма. Из уравнений Максвелла следовало важное предсказание: в пустоте должны распространяться электромагнитные волны. В 1888 г., спустя 20 лет после опубликования теории Максвелла, Г. Герц экспериментально доказал существование этого фундаментального физического явления.

Возникал вопрос, что является носителем электромагнитного поля. Сам Максвелл считал, что эту функцию выполняет эфир. «Не может быть сомнений, — писал он,— что межпланетное и межзвездное пространство не является пустым, а заполнено некоторой материальной субстанцией или телом, несомненно наиболее крупным и, возможно, самым однородным из всех других тел».

Эта загадочная субстанция — эфирное море — должна была обладать парадоксальными свойствами: она должна быть почти абсолютно твердой, т. к. скорость света очень велика, но одновременно не должна оказывать никакого сопротивления движению небесных тел. Передавая свет и другие электромагнитные волны, она в то же время должна быть абсолютно прозрачной. Все это изрядно запутывало физическую картину мира. «Мы не знаем источник механических процессов,— писал Гельмгольц,— в нашем распоряжении лишь символы, лишь названия переменных, входящих в уравнения».

Чтобы внести ясность в эти вопросы, надо было опытным путем обнаружить существование эфира. Решить эту задачу можно было воспользовавшись тем обстоятельством, что уравнения Максвелла в отличие от законов механики Ньютона неинвариантны относительно системы отсчета. Эту идею использовали А. Май- кельсон и Э. Морли, осуществившие в 1887 г. интер- ферометрическое сравнение пучков света, распространявшихся поперек движения Земли и вдоль него. Итог опытов сформулирован Майкельсоном в следующих словах: «Было продемонстрировано, что результат, предсказываемый теорией неподвижного эфира, не наблюдается, откуда с необходимостью следует вывод об ошибочности данной гипотезы».

X. Лоренц и Дж. Фицджеральд предположили гипотезу сокращения длины тел, в том числе и интерферометра вдоль направления:

to

f і

где с — скорость света, a v — скорость движения.

Как видно из этих преобразований, должен меняться и темп хода времени. Эта гипотеза снимала проблему, но ценой ее замены другой, не менее трудной.

На этом проблемы механистической картины мира не закончились. Из термодинамики и законов электромагнетизма следовало, что максимальная интенсивность излучения черного тела должна приходиться на

коротковолновую область спектра. Эксперимент дал прямо противоположный результат: в этой области наблюдался минимум излучения. Столь резкое расхождение теории с экспериментом получило название «ультрафиолетовой катастрофы».

Однако все эти неудачи теории мало повлияли на веру большинства ученых во всесилие механической картины мира.

Лорд Кельвин (У. Томсон), встречая новый XX в., произнес тост за успехи теоретической физики, на ясном небосводе которой осталось лишь два облачка — неудача опыта Майкельсона — Мор л и и «ультрафиолетовая катастрофа».

Произнося эти слова, сэр Уильям показал себя не только неисправимым оптимистом, но и провидцем: из первого упомянутого им «облачка» очень скоро родилась теория относительности, а из второго — квантовая механика.

<< | >>
Источник: С.А. Лебедев. Основы философии науки / под ред. проф. С.А. Лебедева: Учебное пособие для вузов. — М.: Академический Проект,2005.— 544 c.. 2005

Еще по теме Термодинамика и электромагнетизм: