<<
>>

Кванты и относительность

  Сначала была решена проблема «ультрафиолетовой катастрофы». И привело это к радикальному пересмотру фундаментальных понятий материи и поля. Первый шаг в этом направлении в 1900 г.
сделал Макс Планк, выдвинувший гипотезу о квантах электромагнитного излучения. Согласно этой гипотезе, излучение испускается в виде отдельных порций энергии (квантов), величина которых пропорциональна частоте излучения:

Е = hv,

где h — фундаментальная постоянная, имеющая размерность действия (эрг • с) и впоследствии названная планкове - кой. Используя эту гипотезу, Планк получил выражение для распределения энергии в спектре излучения черного тела, совпадающее с экспериментом.

Следующий шаг в 1905 г. сделал Альберт Эйнштейн, который показал, что свет не только испускается, но и поглощается в форме квантов энергии. После этого такие квантованные порции электромагнитного излучения ста-

ли называть фотонами. Стало ясно, что электромагнитное излучение обладает парадоксальными свойствами: в некоторых опытах оно проявляет свои волновые свойства, в других оно напоминает поток корпускул, фотонов.

А вскоре де Бройль выдвинул гипотезу, что этот дуализм корпускулярных и волновых свойств присущ не только свету, но и веществу, элементарным частицам. Через несколько лет К. Дэвидсон исследовал рассеяние пучка электронов на монокристаллической мишени и показал, что этот процесс идет в точном соответствии с формулой де Бройля, определяющей волновые свойства электронов.

Становилось все более ясно, что физические свойства элементарных частиц — наименьших порций материи — мало напоминают то, что можно сказать о них на основании механистической картины мироздания. В 1927 г. Вернер Гейзенберг показал, что описание поведения элементарных частиц с помощью классических понятий координат, импульса и энергии лишь приблизительно соответствует их реальным свойствам.

Соответствующее ограничение получило название соотношений неопределенности Гейзенберга:

И)

2т г

Ар-Ахgt;

AE-Atgt; —              (5)

2тг'

Здесь х— координата частицы, р = mV— ее импульс,

Е — энергия, t — момент времени.

Смысл формул (4) и (5) состоит в том, что нельзя одновременно точно определить значения координаты и импульса частицы, а также энергии для данного момента времени.

В классической механике поведение материальной частицы описывается основным законом динамики (второй закон Ньютона). Заметим, что Ньютон сформулировал этот закон для материальной точки, которая имеет массу, но не имеет размера. Как следует из

принципа дуализма волна-частица и соотношений неопределенности, для описания поведения элементарных частиц этот закон неприменим. Выход из этого положения нашел Эрвин Шредингер, который воспользовался идеей де Бройля, сопоставив движение микрочастицы с комплексной функцией координат и времени, которую он назвал волновой и обозначил буквой \Р. Решение волнового уравнения Шредингера для функции ? характеризует состояние микрочастицы.

Уравнение Шредингера является основным уравнением квантовой механики. Физический смысл волновой функции Жуказал М. Борн. Квадрат модуля Ч? определяет вероятность того, что микрочастица будет обнаружена в пределах некоторого объема. Предсказания квантовой механики, таким образом, в отличие от классики носят вероятностно-статистический характер.

Переход к квантово-механической картине мира позволил снять противоречия, возникшие в связи с «ультрафиолетовой катастрофой». Чтобы сделать понятной неудачу опыта Майкельсона-Морли по поиску эфира, потребовалось описать картину мира на языке теории относительности.

В 1905 г. А. Эйнштейн опубликовал работу «К электродинамике движущихся тел», в которой заложил основы специальной теории относительности. Предложенный им способ решения проблемы состоял в том, чтобы превратить ее в принцип.

В основу своей теории он положил два постулата: 1. Скорость света в вакууме одинакова во всех системах координат, движущихся равномерно и прямолинейно друг относительно друга. 2. Во всех таких системах координат одинаковы все законы природы (принцип относительности).

Из этих постулатов вытекали следствия, ведущие к радикальному пересмотру классической картины мира. Во-первых, оказалось, что не существует ни абсолютного времени, ни абсолютного пространства. Ход времени зависит от системы координат. Во-вторых, стало ясно, что законы природы инвариантны относительно преобразований Лоренца (2)-(3). Отсюда, между прочим, следовал знаменитый «парадокс близнецов».

БИЯ

Современная научная картина мирз

В-третьих, оказалось, что с увеличением скорости тела 2В4 кинетическая энергия как бы увеличивает его сопротив- ление движению, а масса тела при этом возрастает. Отсюда в свою очередь следовало установленное Эйнштейном соотношение эквивалентности массы и энергии:

Е = тс2,              (6)

где с — скорость света. Стало ясно, что масса и энергия по существу сходны, это только разные выражения одного и того же свойства реальности. Формулу (б) можно рассматривать как обобщенный закон сохранения энергии. Принято считать, что именно благодаря дефекту массы при реакции превращения протонов в ядра гелия в соответствии с формулой (6) в недрах звезд выделяется достаточное количество энергии, чтобы поддерживать их существование в течение миллиардов лет.

Четвертое следствие получил Г. Минковский. Он показал, что в рамках модели мира, соответствующей теории относительности, пространство и время — это единый четырехмерный феномен, а не раздельные автономные сущности.

Осталось решить проблему гравитации. Эту задачу в 1916 г. решил Эйнштейн, создав общую теорию относительности (ОТО). Если для формулирования законов классической механики Ньютону потребовался аппарат дифференциального и интегрального исчисления, то в основу ОТО была положена неевклидова геометрия Римана и тензорный анализ.

Из ОТО следовало, что гравитация — это искривление пространства вблизи массивных тел.

Картина мира, соответствующая ОТО, содержит всего две автономные реальности — вещество и поле. Законы тяготения — это структурные законы, описывающие гравитационное поле между материальными объектами. Между материей и полем в ОТО нет качественного различия: вещество находится там, где концентрация поля максимальна, поле — там, где она мала. Эйнштейн полагал, что в перспективе всю теорию удастся свести к единственной реальности — полю.

Вселенная, описываемая ОТО, была стационарной. В 1922 г. А.А. Фридман, анализируя уравнения ОТО, показал, что теория содержит и нестационарные решения: Вселенная может расширяться. Впоследствии Эйнштейн признался, что не заметив этого решения, „щ- он совершил самую большую ошибку в своей жизни. ?«3

»

В 1929 г. Э. Хаббл, наблюдая красное смещение в спектрах излучения далеких галактик, доказал, что Вселенная расширяется на самом деле. Зная скорость, с которой разбегаются галактики, можно было рассчитать, когда начался этот процесс. Согласно современным оценкам, это произошло 13,7 миллиардов лет назад. Событие, которое привело к возникновению Вселенной, получило название Большой Взрыв.

Интересно оценить масштабы пространства, времени и энергии, которые соответствуют этой стадии эволюции нашего мира. Для этого можно воспользоваться численными значениями фундаментальных констант — постоянной Планка h = 6,62-10 ~27 эрге, скоростью света с = 3-Ю10 см/с и гравитационной постоянной

GA 6,6 7 4 0 -AA1              (7)

2

и рассчитать соответствующую величину этих масштабов:

Ю-ззс, 10-43СМ, ЮАГэВ.

Эти величины длины, времени и энергии получили название планковских масштабов. Их смысл состоит в том, что они определяют ту границу, до которой применима современная физическая теория. На меньших масштабах перестают работать причинно-след- ственные связи и ничего нельзя сказать ни о структуре пространства, ни о поведении времени.

<< | >>
Источник: С.А. Лебедев. Основы философии науки / под ред. проф. С.А. Лебедева: Учебное пособие для вузов. — М.: Академический Проект,2005.— 544 c.. 2005

Еще по теме Кванты и относительность: