<<
>>

§ 21.1. ПОСТРОЕНИЕ РЯДОВ РАСПРЕДЕЛЕНИЯ

Изучение структуры той или иной совокупности достигается построением рядов распределения, характеризующих распределение единиц совокупности по одному признаку.

Ряды распределения делятся на вариационные и атрибутивные.

Вариационный ряд — это распределение единиц совокупности по количественному признаку. В атрибутивных рядах представлена группировка по атрибутивным (качественным) признакам.

Форма построения вариационного ряда зависит от характера изменения изучаемого признака, он может быть построен в форме дискретного ряда или в форме интервального ряда.

По характеру вариации значений признака различают:

? признаки с прерывным изменением (дискретные);

•Ф признаки с непрерывным изменением (нёпрерывные).

Признаки с прерывным изменением могут принимать лишь конечное число определенных значений (например, тарифный разряд работников, число туристов в группе и др.). Признаки с непрерывным изменением могут принимать в определенных границах любые значения (например, стаж работы, размер дохода и т. д.).

Для признака, имеющего прерывное изменение и принимающего небольшое количество значений, применяется построение дискретного ряда. В первой графе ряда указываются конкретные значения каждого индивидуального значения признака, во второй графе — численность единиц с определенным значением признака.

Для признака, имеющего непрерывное изменение, строится интервальный вариационный ряд, состоящий, так же как и

дискретный ряд, из двух граф (варианты и частоты). При его построении в первой графе отдельные значения признака указываются в виде интервалов «от — до», во второй графе — число еди- ниц, входящих в интервал. Интервалы «Ормуинш, ИМ jfjMtNMi

равные и закрытые.

Величина интервала определяется по формулі!

R ' '

г = ~> R = Хтах ~ -"-тіп'

где R — размах колебания (варьирования) признака; хтіХ; хт\п — максимальное и минимальное значения признака в совокупности соответственно; т — число групп.

Число групп приближенно определяется по формуле Стерд- жесса:

т = 1 + 3,322 lgn,

где п — общее число единиц совокупности.

Поскольку количество групп не может быть дробным числом, то полученную по этой формуле величину округляют до целого большего числа.

При небольшом объеме информации число групп может быть установлено исследователем без использования формулы Стерд- жесса.

Величину интервала обычно округляют до целого (всегда большего) числа.

Нижнюю границу первого интервала принимают равной минимальному значению признака (чаще всего его предварительно округляют до целого меньшего числа); верхняя граница первого интервала соответствует значению (л:т;п + І).

Для последующих групп границы определяются аналогично, то есть последовательно прибавляется величина интервала. Если единица обладает значением, признака, равным величине верхней границы интервала, то ее сле-дует относить к следующей группе.

Примером интервального вариационного ряда служит табл. 21.1.

Таблица 21.1. Группы туристских предприятий по объему выручки от реализации туристского продукта Группы туристских предприятий по объему выручки от реализации туристского продукта, в тыс. руб. Число предприятий Накопленная частота, S 80—90 2 2 90—100 22 24 100—110 48 72 110—120 16 88 120—130 2 90 Итого 90

В каждой выделенной группе различают нижнюю и верхнюю границы интервала. Так, в последней группе предприятий (табл. 21.1) нижняя граница — 120 тыс. руб., верхняя — 130 тыс. руб.

При построении атрибутивных рядов число групп соответствует числу разновидностей признака. ¦

Ряд распределения, состоящий из двух граф (варианты и частоты), иногда дополняется другими графами, необходимыми для вычисления отдельных статистических показателей. Достаточно часто в ряд вводится графа, в которой подсчитываются накопленные частоты S (см. табл. 21.1). Накопленные частоты показывают, какое число единиц совокупности обладает значением признака «не более» или «не менее» определенного, и исчисляются путем последовательного прибавления к частоте первого интервала частот последующих интервалов.

Если вариационный ряд дан с неравными интервалами, то для правильного представления о характере распределения необходимо произвести расчет абсолютной или относительной плотности распределения.

Абсолютная плотность распределения (р) представляет собой величину частоты, приходящейся на единицу размера интервала отдельной группы ряда:

Относительная плотность распределения (р1) — это частное от деления частости (w) отдельной группы на размер ее интервала:

, w

р * Т

Эти показатели используются для преобразования интервалов, что бывает необходимо при сравнительной оценке двух группировок.

Для наглядности вариационный ряд изображают графически. Дискретный вариационный ряд изображается с помощью поли-гона (или многоугольника) распределения частот, являющегося разновидностью статистических ломаных.

Для изображения ин-тервального ряда применяются полигон распределения час-тот и гистограмма частот.

Графики строятся в прямоугольной системе координат. При построении полигона частот на оси абсцисс в одинаковом масштабе откладываются направо в порядке возрастания значения признака (для дискретного характера) или центральные значения интервалов (для интервальных рядов); по оси ординат наносится шкала для выражения величин частот. Из точек на оси абсцисс, соответствующих величине признака, восстанавливаются перпендикуляры высотой, соответствующей частоте. Вершины перпендикуляров соединяются отрезками прямой. Крайние точки полученной ломаной соединяются с лежащими на оси абсцисс следующи- ми (меньшими и большими) возможными, но фактически не Ні- блюдающимися значениями признака, частота которых, очевидно, равна 0. Замкнутая с осью абсцисс ломаная линия представляет полигон распределения частот.

Для построения гистограммы по оси абсцисс откладывают величины интервалов, а частоты изображаются прямоугольниками, построенными на интервалах с высотой в масштабе оси ординат. В случае неравенства интервалов гистограмма строится не по ча-стотам или частостям, а по плотности распределения.

В ряде случаев для изображения вариационных рядов используется кумулятивная кривая (кумулята). Она особенно удобна для сравнения вариационных рядов. Накопленные частоты на-носятся на чертеж в виде ординат. Соединяя вершины отдельных ординат прямыми, получают ломаную линию, которая, начиная с нуля, непрерывно поднимается над осью абсцисс до тех пор пока не достигнет высоты, соответствующей обшей сумме частот.

Если поменять местами оси координат в кумуляте, то получаем новый вид графического изображения — огиву.

При изучении процессов концентрации (концентрации производства, концентрации капитала и др.) используется графическое изображение вариационного ряда в виде кривой Лоренца (или кривой концентрации). Для ее построения абсолютные показатели числа единиц в группах и размер изучаемого признака выражаются в относительных показателях (в долях или процентах к итогу) и исчисляются их накопленные значения.

При построении графика на горизонтальной линии наносится шкала для ряда накопленных частостей, а на вертикальной линии — шкала для накопленных относительных величин размера изучаемого признака.

Далее наносятся точки в соответствии с накопленными значениями двух рядов. Соединив все точки прямыми линиями, получают кривую, характеризующую степень неравномерности распределения.

Линия, соединяющая нижний левый угол графика с верхним правым (диагональ четырехугольника), является линией равно-мерного распределения. Чем больше фактическое распределение двух показателей отклоняется от равномерного, тем больше кри-вая удалена от диагонали.

Если значения признака в вариационном ряду даны в порядке убывания (от большего к меньшему), то построенная по таким данным кривая Лоренца будет расположена выше диагонали в форме выпуклости.

Для анализа вариационных рядов используются три группы показателей:

показатели центра распределения;

-Ф- показатели степени вариации;

¦О- показатели формы распределения.

<< | >>
Источник: Яковлев Г. А.. Экономика и статистика туризма: Учебное пособие. 2-е изд., перераб. и доп. — М.: Издательство РДЛ,2004. — 376 с.. 2004

Еще по теме § 21.1. ПОСТРОЕНИЕ РЯДОВ РАСПРЕДЕЛЕНИЯ: