<<
>>

§2.4. Раскраски графов. Планарность

Пусть задано несколько красок . Раскраской графа G называется правило, по которому каждой вершине графа присваивается номер , соответствующий краске, причем смежные вершины имеют разные номера.

Хроматическим числом графа G называется наименьшее число красок, требуемое для раскраски данного графа.

Для полного графа .

Граф называется бихроматичным, если для его раскраски требуется две краски ().

Теорема (Критерий бихроматичности). Для любого графа G эквивалентны условия:

(1) граф G бихроматичен;

(2) граф G двудольный;

(3) в графе G нет циклов нечетной длины.

Доказательство. Будем доказывать эквивалентность по схеме .

Пусть граф G бихроматичен. Нужно доказать, что в нем нет циклов нечетной длины. Предположим, что цикл нечетной длины существует: . В силу бихроматичности нечетные вершины одного цвета. Следовательно, вершины и одного цвета, но они смежные. Получили противоречие. Циклов нечетной длины нет.

Пусть в графе G нет циклов нечетной длины. Нужно доказать, что G двудольный. Пусть – компоненты связности графа G.

Достаточно доказать, что каждая компонента связности является двудольным графом. Поэтому можно считать G связным графом, т.е. любые две вершины в нем соединены путем. Введем на множестве вершин графа V отношение “~” следующим образом:, если существует путь четной длины из вершины в вершину . Если из в существует путь четной длины, то из в не существует пути нечетной длины, иначе нашелся бы цикл нечетной длины.

Докажем, что “~” – отношение эквивалентности. Действительно, оно рефлексивно: (из в существует путь длины 0); симметрично: если , то (если из в существует путь четной длины, то существует путь четной длины из в ); транзитивно: если и , то (если существует пути четной длины из в и из в , то существует пути четной длины из в .

Следовательно, множество вершин графа V разбивается на два класса эквивалентности V1 и V2 : V1 – множество вершин графа, до которых из фиксированной вершины а существует путь четной длины, V2 – множество вершин графа, до которых из фиксированной вершины а существует путь нечетной длины. Тогда концы произвольного ребра лежат в разных множествах V1 и V2, иначе для двух вершин одного множества существовал бы путь длины 1 по этому ребру. Следовательно, граф G двудольный.

Пусть G – двудольный граф. Нужно доказать, что он бихроматичен. Так как смежные вершины графа принадлежат разным долям, то вершины одной доли раскрасим в один цвет, второй – в другой. Теорема доказана.

Реберным хроматическим числом графа G называется наименьшее количество красок, необходимых для раскраски ребер графа таким образом, чтобы смежные ребра имели разные цвета.

Для полных графов

Если то, очевидно, .

Справедлива теорема Визинга. .

<< | >>
Источник: Дискретная математика. Лекции. 2016

Еще по теме §2.4. Раскраски графов. Планарность: