Булевы переменные и функции
Переменная х, принимающая значения 0 или 1, называется булевой (или логической, двоичной). Функция F, зависящая от булевых переменных и принимающая также значения 0 или 1, называется булевой (или логической, двоичной) и обозначается
.
Булевы функции F от n переменных могут быть заданы посредством таблицы истинности, содержащей
строк и
столбцов. В левой части таблицы содержатся наборы значений n переменных, расположенные в порядке возрастания их десятичного эквивалента, а в правой ее части - значения функции F на соответствующих наборах значений переменных.
В качестве примера рассмотрим таблицу истинности некоторой булевой функции F, зависящей от переменных ,
и
.
![]() | ![]() | ![]() | F |
0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 |
1 | 0 | 0 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 |
Булева функция n переменных F однозначно определяется - разрядным булевым вектором ее значений w(F) (т.е. w(F) - таблица истинности функции F). Например, в этом примере имеем w(F)=(00100111).
Рассматриваемая булева функция F принимает значения 0 на наборах 000, 001, 011 и 100, а значение 1 - на наборах 010, 101, 110 и 111.
Множество наборов, на которых функция F принимает значение 1, называется характеристическим и обозначается через NF. В настоящем примере имеет место NF = (010, 101, 110, 111).
Общее число различных булевых функций F от n переменных равно . Т.е. число булевых функций от двух переменных равно
, от трех переменных
.